Formula 1 Machine Learning Project

Stephan Karas

TABLE OF CONTENTS

Model Choice

Data Overview

Problem Statement

The primary objective is to predict the finishing position of a Formula One driver in a race. We propose developing a predictive model incorporating time-sensitive qualifying data and weather data for short-term forecasts

02

Data Overview

Data Sources

developed by Chris Newell. It is a free service that provides a historical record of Formula One (F1) racing results and statistics.

Visual Crossing

The Visual Crossing Weather API provides historical, current, and forecast weather data for any location worldwide, enabling detailed weather insights for various applications.

Dataset

To achieve this objective, we will use a comprehensive dataset that includes:

- **Driver Attributes:** Information such as age, nationality, career length, and average points per race.

- **Constructor Attributes:** Team references, nationality, and historical performance.

- **Race and Circuit Information:** Details like race year, round, and circuit specifics.

- Weather Conditions: Expected weather conditions on race day, sourced from the Visual Crossing API.

- **Circuit-Specific Historical Performance:** Past performance data of drivers on specific circuits.

Dataset

Each row represents a driver's participation in a specific race.

	raceld	race_year	race_round	race_circuitId	circuitld	circuit_alt	tempmax	tempmin	humidity	precip	 circuit_country_Turkey	circuit_count
0	1	2009	1	1	1	10	76.7	47.1	50.7	0.000	0	
1	2	2009	2	2	2	18	89.7	75.5	84.8	1.075	0	
2	3	2009	3	17	17	5	71.4	60.9	87.3	0.370	0	
3	5	2009	5	4	4	109	68.2	59.4	78.7	0.009	0	
4	6	2009	6	6	6	7	75.8	62.3	77.6	0.000	0	
9043	939	2015	13	15	15	18	93.5	57.5	40.9	0.000	0	
9044	940	2015	14	22	22	45	86.7	66.0	73.7	0.315	0	
9045	944	2015	18	18	18	785	83.1	65.3	75.1	0.197	0	
9046	943	2015	17	32	32	2227	75.0	48.3	73.3	0.008	0	
9047	942	2015	16	69	69	161	63.2	57.8	89.1	0.688	0	

9048 rows × 90 columns

Target Variable

The target variable for our model is the driver's finishing position, categorized as 'driver_race_result_category', with the following classifications:

- 0: Finished outside the top 10.
- 1: Finished in the top 10 but outside the top 5.
- 2: Finished in the top 5 but did not win.
- 3: Won the race.

Challenges

- Integrating multiple data sources, including historical race data from the Ergast API and weather data from Visual Crossing Weather API.
- Ensuring data consistency and synchronization between different sources.
 - Handling potential class imbalance in race outcome categories.
- Effectively incorporating real-time data (qualifying results) into the model.

03

Data Preprocessing

DATA PRELOADING

import pandas as pd

drivers = pd.read_csv('f1db_csv\drivers.csv')
constructors = pd.read_csv('f1db_csv\constructors.csv')
races = pd.read_csv(r'f1db_csv\races.csv')
results = pd.read_csv(r'f1db_csv\results.csv')
circuits = pd.read_csv('f1db_csv\circuits.csv')
qualifying = pd.read_csv('f1db_csv\qualifying.csv')
sprint = pd.read_csv('f1db_csv\sprint_results.csv')

Feature Engineering

Calculate historical points per race
results['points'] = results['points'].astype(float) # convert points to floaat

Calculate the average points each driver has earned per race, grouped by their unique driver ID
avg_points = results.groupby('driverId')['points'].mean().reset_index() # Group by driver and calculate mean points

Merge the average points data back into the drivers DataFrame # This adds the avg_points column to the drivers DataFrame where the driverId matches drivers = drivers.merge(avg_points, on='driverId', how='left')

Merging DB Tables

Merging the relevant database tables, bringing together our dataset

- 1. Renaming the columns of each dataset to include its name
- 2. Merging Races & Circuits table (to initially incorporate date and location data)

races_circuits = pd.merge(races, circuits, left_on='race_circuitId', right_on='circuitId')

Incorporating Weather Data

- We used the Visual Crossing Weather API to include weather forecasts in our predictions.
- Relevant weather features included: tempmax, tempmin, humidity, precip, windspeed, and conditions
 - Example code to fetch and integrate weather data:

```
import requests
weather features = ['tempmax', 'tempmin', 'humidity', 'precip',
                                                                                       def get relevant weather features(location, date, api key):
'windspeed', 'conditions']
                                                                                         api url = f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{location}/{date}"
for feature in weather features:
                                                                                         params = {
                                                                                           'unitGroup': 'us'.
  races circuits[feature] = None
                                                                                           'key': api key,
                                                                                           'include': 'obs'
races circuits['race date'] =
                                                                                         response = requests.get(api_url, params=params)
pd.to datetime(races circuits['race date']).dt.strftime('%Y-%m-%d'
                                                                                         if response.status code == 200:
                                                                                           data = response.json()
                                                                                           if 'days' in data and len(data['days']) > 0:
                                                                                             weather day = data['days'][0]
for index, row in races circuits.iterrows():
                                                                                             relevant weather features = {
                                                                                                'tempmax': weather day.get('tempmax'),
  weather data =
                                                                                                'tempmin': weather day.get('tempmin'),
get relevant weather features(str(row['circuit location']),
                                                                                               'humidity': weather day.get('humidity'),
                                                                                                'precip': weather day.get('precip').
str(row['race date']), "YOUR API KEY")
                                                                                               'windspeed': weather_day.get('windspeed'),
  if weather data:
                                                                                                'conditions': weather day.get('conditions')
      for feature in weather features:
                                                                                             return relevant weather features
         races circuits.at[index, feature] = weather data[feature]
                                                                                         else:
         print("Collected data for", str(row['circuit location']), ",",
                                                                                           print(f"Failed to retrieve data for {location} on {date}: {response.status code}")
                                                                                           return None
str(row['race date']))
```


Merging DB Tables

Merging the relevant database tables to create a comprehensive dataset

1. Merging Results with Circuits and Races.

races_circuits_results = pd.merge(races_circuits, results, on='raceId')

2. Creating the target variable, categorizing the results value

Merging DB Tables

Merging the relevant database tables to create a comprehensive dataset

3. Merging the Drivers and Constructors, and Qualification tables

df quali = pd.merge(df cleaned, qualifying, on=['raceId', 'driverId'])

Cleaning weather data

- Removed rows with NA weather data (older races) to ensure data quality

- Combined driver's forename and surname for a unique identifier.

Example code:

df_filtered_weather = races_circuits.dropna(subset=['tempmax', 'tempmin',
'humidity', 'precip', 'windspeed', 'conditions'])
df_filtered_weather['fullname'] = df_filtered_weather['driver_forename'] + '_' +
df_filtered_weather['driver_surname']
df_filtered_weather.to_csv('data_preview/filtered_weather_data.csv')

Removing Irrelevant Features

Dropped columns that are not relevant to the prediction task to reduce dimensionality and improve model performance.

- Example code:

df_cleaned = pd.read_csv('data_preview/filtered_weather_data.csv')
df_quali = pd.merge(df_cleaned, qualifying, on=['raceId', 'driverId'])

df_cleaned = df_quali.drop(columns=[
 'race_url', 'circuit_circuitRef', 'circuit_url', 'result_positionText',
 'driver_forename', 'driver_surname', 'driver_number', 'driver_driverRef',
 'driver_code', 'driver_age', 'driver_url', 'constructor_constructorRef',
 'constructor_url', 'race_fp1_date', 'race_fp1_time', 'race_fp2_date',
 'race_fp2_time', 'race_fp3_date', 'race_fp3_time', 'race_quali_date',
 'race_quali_time', 'race_sprint_date', 'race_sprint_time', 'Unnamed: 0', 'quali_qualifyId',
 'constructorId_y', 'quali_number', 'quali_position', 'constructorId_x'
])
df cleaned.to csv('data quali preview/cleaned data quali.csv')

Converting Qualifying Timings

- Converted qualifying timings from string format to numerical seconds to facilitate model training
- Filled NaN values in qualifying columns with a large time value to handle missing data.

def time_to_seconds(time_str):
 """Convert time string in format 'm:ss.mmm' to seconds."""
 if pd.isnull(time_str):
 return np.nan
 mins, secs = time_str.split(':')
 return int(mins) * 60 + float(secs)

Convert time strings to numerical format all_quali_columns = ['quali_q1', 'quali_q2', 'quali_q3'] # Example column names for col in all_quali_columns: df_na_cleaned[col] = df_na_clean

- majority of drivers finished outside the top 10 (category 0)
- a smaller number finishing in the top 10 but not the top 5 (category 1)
- fewer still in the top 5 but not winning (category 2)
- the least number of drivers won the race (category 3).

04

Model Choice

RandomForest + Parameter Grid Tuning

- We chose the Random Forest algorithm due to its ability to handle large datasets and capture complex interactions between features.
- Initial parameter selection based on common starting values and domain knowledge.
 - Created a parameter grid for hyperparameter tuning.

param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30],
 'min_samples_split': [2, 5, 10],
 'min_samples_leaf': [1, 2, 4],
 'max_features': ['sqrt', 'log2', None],
 'bootstrap': [True, False]

How RandomForest Works for us

Data: We have a comprehensive dataset that includes our relevant features.

-

Training: Creates multiple decision trees, each trained on a different random subset of our dataset.

- allows each tree to learn from different parts of the data, such as specific race days, varying weather conditions, or different driver performance statistics.

Prediction: Each decision tree independently analyzes its subset of data and makes a prediction about the driver's finishing position.

I.e. one tree might consider how the driver performed in similar weather conditions, while another looks at qualifying results.

Final Decision: The Random Forest aggregates the predictions from all the trees. By using a majority vote system, it determines the most likely finishing position for the driver.

Parameters choice

- Choosing the right parameters is crucial for the performance of our Random Forest model.
- n_estimators: specifies the number of trees in the forest.

max_depth: limits the number of nodes in the tree.

min_samples_split: sets minimum number of samples required in a node to split into two new nodes.

min_samples_leaf: min no. of samples required to be at a leaf node.

max_features: no. of features to consider when looking for the best split.

bootstrap: boolean to use bootstrap samples when building trees. (Drawing random samples with replacement from the original dataset.)

Ensuring Fair Train-Test Data Split

- We used the StratifiedShuffleSplit technique to split our dataset. This method ensures that both training and test sets maintain the same class distribution as the original dataset.
 - stratifying the data on driver_race_result_category, we preserve the proportion of each race result category in both sets
 - provides a balanced and representative sample for training and evaluation.

- Applied SMOTE (Synthetic Minority Oversampling Technique) to the training set.
 - generating synthetic samples for the minority classes, enhancing their representation
 - improving the model's ability to learn from the underrepresented categories.
- set class_weight='balanced' to ensure the model pays more attention to minority classes.

RandomizedSearchCV Hyperparameter tuning

RandomizedSearchCV works by randomly sampling a fixed number of hyperparameter combinations from a specified range and evaluating each combination using cross-validation, then selecting the best combination based on performance.

- It uses K-fold cross-validation to evaluate the performance of each parameter combination.

Baseline Classifier: KNN

- KNN classifies a data point by looking at the k closest data points (neighbors) in the dataset and assigning it to the most common class among those neighbors.
- Same Data preparation as RandomForest:
 - Grouped Train-Test Split (20% test size)
 - Standardized features with StandardScaler
- KNN (K-Nearest Neightbors):
 - Optimized k using RandomizedSearchCV
 - Tested odd values of k (1-29) to avoid ties (even k can result in equal votes from neighbors)
 - In KNN, a tie occurs when an equal number of neighbors vote for different classes.
- Results:
 - Best k: 27

05

Model Evaluation

Classification Report

Best parameters: {'n_estimators': 400, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'max_depth': 100, 'bootstrap': False}

Accuracy	on te	est set: 0.59	944751381	21547	
Classific	catio	n Report on t	est set:		
		precision	recall	f1-score	support
	0	0.72	0.76	0.74	963
	1	0.40	0.30	0.35	423
	2	0.48	0.55	0.52	339
	3	0.44	0.44	0.44	85
accur	racy			0.60	1810
macro	avg	0.51	0.51	0.51	1810
weighted	avg	0.59	0.60	0.59	1810

Confusion Matrix

Baseline Classifier: KNN

Best paramete	ers: {'n_neig	hbors': 2	7}	
	precision	recall	f1-score	support
0	0.51	0.93	0.66	892
1	0.25	0.10	0.14	473
2	0.46	0.13	0.20	406
3	0.00	0.00	0.00	132
accuracy			0.49	1903
macro avg	0.31	0.29	0.25	1903
weighted avg	0.40	0.49	0.39	1903

Thank You!

