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Statement01



The primary objective is to predict the finishing position of 
a Formula One driver in a race. We propose developing a 
predictive model incorporating time-sensitive qualifying 

data and weather data for short-term forecasts 
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Data Sources

Ergast 
Database

developed by Chris Newell. It 
is a free service that provides a 

historical record of Formula 
One (F1) racing results and 

statistics.

Visual Crossing
The Visual Crossing Weather 

API provides historical, current, 
and forecast weather data for 

any location worldwide, 
enabling detailed weather 

insights for various 
applications.



Dataset
To achieve this objective, we will use a comprehensive 
dataset that includes: 

- Driver Attributes: Information such as age, 
nationality, career length, and average points per race. 

- Constructor Attributes: Team references, nationality, 
and historical performance. 

- Race and Circuit Information: Details like race year, 
round, and circuit specifics.

 - Weather Conditions: Expected weather conditions 
on race day, sourced from the Visual Crossing API.

 - Circuit-Specific Historical Performance: Past 
performance data of drivers on specific circuits. 



Dataset

Each row represents a driver's participation in a 
specific race.



Target 
Variable
The target variable for our model is the 
driver's finishing position, categorized as 
'driver_race_result_category', with the 
following classifications: 
- 0: Finished outside the top 10. 
- 1: Finished in the top 10 but outside the 
top 5. 
- 2: Finished in the top 5 but did not win. 
- 3: Won the race. 



Challenges
- Integrating multiple data sources, including historical race data from the 

Ergast API and weather data from Visual Crossing Weather API. 

- Ensuring data consistency and synchronization between different sources. 

- Handling potential class imbalance in race outcome categories. 

- Effectively incorporating real-time data (qualifying results) into the model.
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DATA PRELOADING



Feature Engineering



Merging DB Tables
Merging the relevant database tables, bringing together our dataset

1. Renaming the columns of each dataset to include its name
2. Merging Races & Circuits table (to initially incorporate date and location data)  



Incorporating Weather Data
- We used the Visual Crossing Weather API to include weather forecasts in our predictions.

- Relevant weather features included: tempmax, tempmin, humidity, precip, windspeed, and conditions
- Example code to fetch and integrate weather data:

weather_features = ['tempmax', 'tempmin', 'humidity', 'precip', 
'windspeed', 'conditions']
for feature in weather_features:
    races_circuits[feature] = None

races_circuits['race_date'] = 
pd.to_datetime(races_circuits['race_date']).dt.strftime('%Y-%m-%d'
)

for index, row in races_circuits.iterrows():
    weather_data = 
get_relevant_weather_features(str(row['circuit_location']), 
str(row['race_date']), "YOUR_API_KEY")
    if weather_data:
        for feature in weather_features:
            races_circuits.at[index, feature] = weather_data[feature]
            print("Collected data for", str(row['circuit_location']), ",", 
str(row['race_date']))

import requests

def get_relevant_weather_features(location, date, api_key):
    api_url = f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{location}/{date}"
    params = {
        'unitGroup': 'us',
        'key': api_key,
        'include': 'obs'
    }
    response = requests.get(api_url, params=params)
    if response.status_code == 200:
        data = response.json()
        if 'days' in data and len(data['days']) > 0:
            weather_day = data['days'][0]
            relevant_weather_features = {
                'tempmax': weather_day.get('tempmax'),
                'tempmin': weather_day.get('tempmin'),
                'humidity': weather_day.get('humidity'),
                'precip': weather_day.get('precip'),
                'windspeed': weather_day.get('windspeed'),
                'conditions': weather_day.get('conditions')
            }
            return relevant_weather_features
    else:
        print(f"Failed to retrieve data for {location} on {date}: {response.status_code}")
        return None



Merging DB Tables
Merging the relevant database tables to create a comprehensive dataset

1. Merging Results with Circuits and Races.
races_circuits_results = pd.merge(races_circuits, results, on='raceId')

2. Creating the target variable, categorizing the results value



Merging DB Tables
Merging the relevant database tables to create a comprehensive dataset

3. Merging the Drivers and Constructors, and Qualification tables
df_quali = pd .merge(df_cleaned, qualifying, on=['raceId', 'driverId'])

# Drop columns that arent relevant

df_cleaned = df_quali .drop(columns=[

    'race_url', 'circuit_circuitRef ', 'circuit_url', 'result_positionText ',

    'driver_forename ', 'driver_surname ', 'driver_number ', 'driver_driverRef ',

    'driver_code', 'driver_age', 'driver_url', 'constructor_constructorRef ',

    'constructor_url ', 'race_fp1_date ', 'race_fp1_time ', 'race_fp2_date ',

    'race_fp2_time ', 'race_fp3_date ', 'race_fp3_time ', 'race_quali_date ',

    'race_quali_time ', 'race_sprint_date ', 'race_sprint_time ', 'Unnamed: 0', 'quali_qualifyId ',

    'constructorId_y ', 'quali_number ', 'quali_position ', 'constructorId_x '

])



Cleaning weather data
- Removed rows with NA weather data (older races) to ensure data quality

- Combined driver's forename and surname for a unique identifier.
- Example code:

df_filtered_weather = races_circuits.dropna(subset=['tempmax', 'tempmin', 
'humidity', 'precip', 'windspeed', 'conditions'])
df_filtered_weather['fullname'] = df_filtered_weather['driver_forename'] + '_' + 
df_filtered_weather['driver_surname']
df_filtered_weather.to_csv('data_preview/filtered_weather_data.csv')



Removing Irrelevant Features

- Dropped columns that are not relevant to the prediction task to reduce 
dimensionality and improve model performance.

- Example code:
df_cleaned = pd.read_csv('data_preview/filtered_weather_data.csv')
df_quali = pd.merge(df_cleaned, qualifying, on=['raceId', 'driverId'])

df_cleaned = df_quali.drop(columns=[
    'race_url', 'circuit_circuitRef', 'circuit_url', 'result_positionText', 
    'driver_forename', 'driver_surname', 'driver_number', 'driver_driverRef', 
    'driver_code', 'driver_age', 'driver_url', 'constructor_constructorRef', 
    'constructor_url', 'race_fp1_date', 'race_fp1_time', 'race_fp2_date', 
    'race_fp2_time', 'race_fp3_date', 'race_fp3_time', 'race_quali_date', 
    'race_quali_time', 'race_sprint_date', 'race_sprint_time', 'Unnamed: 0', 'quali_qualifyId', 
    'constructorId_y', 'quali_number', 'quali_position', 'constructorId_x'
])
df_cleaned.to_csv('data_quali_preview/cleaned_data_quali.csv')



Converting Qualifying Timings
- Converted qualifying timings from string format to numerical seconds to 

facilitate model training
- Filled NaN values in qualifying columns with a large time value to handle 

missing data.
def time_to_seconds(time_str):
    """Convert time string in format 'm:ss.mmm' to seconds."""
    if pd.isnull(time_str):
        return np.nan
    mins, secs = time_str.split(':')
    return int(mins) * 60 + float(secs)

# Convert time strings to numerical format
all_quali_columns = ['quali_q1', 'quali_q2', 'quali_q3']  # Example column names
for col in all_quali_columns:
    df_na_cleaned[col] = df_na_clean



- majority of drivers finished outside the top 10 (category 0)
- a smaller number finishing in the top 10 but not the top 5 (category 1)
- fewer still in the top 5 but not winning (category 2)
- the least number of drivers won the race (category 3).
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RandomForest + Parameter Grid Tuning

- We chose the Random Forest algorithm due to its ability to handle large 
datasets and capture complex interactions between features.

- Initial parameter selection based on common starting values and domain 
knowledge.

- Created a parameter grid for hyperparameter tuning.
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': ['sqrt', 'log2', None],
    'bootstrap': [True, False]
}



How RandomForest Works for us

Data: We have a comprehensive dataset that includes our relevant features.

Training: Creates multiple decision trees, each trained on a different random subset of our dataset.

- allows each tree to learn from different parts of the data, such as specific race days, varying weather 
conditions, or different driver performance statistics.

Prediction: Each decision tree independently analyzes its subset of data and makes a prediction 
about the driver's finishing position. 

- I.e. one tree might consider how the driver performed in similar weather conditions, while another 
looks at qualifying results.

Final Decision: The Random Forest aggregates the predictions from all the trees. By using a majority 
vote system, it determines the most likely finishing position for the driver.



Parameters choice

- Choosing the right parameters is crucial for the performance of our 
Random Forest model. 

n_estimators: specifies the number of trees in the forest.

max_depth: limits the number of nodes in the tree.

min_samples_split: sets minimum number of samples required in a node to split into 
two new nodes.

min_samples_leaf: min no. of samples required to be at a leaf node.

max_features: no. of features to consider when looking for the best split. 

bootstrap: boolean to use bootstrap samples when building trees. (Drawing random 
samples with replacement from the original dataset.)



Ensuring Fair Train-Test Data Split
- We used the StratifiedShuffleSplit technique to split our dataset. This method ensures 

that both training and test sets maintain the same class distribution as the original 
dataset.

- stratifying the data on driver_race_result_category, we preserve the proportion of 
each race result category in both sets

- provides a balanced and representative sample for training and evaluation.

- Applied SMOTE  (Synthetic Minority Oversampling Technique) to the training set.
- generating synthetic samples for the minority classes, enhancing their 

representation 
- improving the model's ability to learn from the underrepresented categories.

- set class_weight='balanced' to ensure the model pays more attention to minority 
classes.



RandomizedSearchCV Hyperparameter 
tuning

- RandomizedSearchCV works by randomly sampling a fixed number of hyperparameter 
combinations from a specified range and evaluating each combination using 
cross-validation, then selecting the best combination based on performance.

- It uses K-fold cross-validation to evaluate the performance of each parameter 
combination.



Baseline Classifier: KNN
- KNN classifies a data point by looking at the k closest data points (neighbors) in the 

dataset and assigning it to the most common class among those neighbors.
- Same Data preparation as RandomForest:

- Grouped Train-Test Split (20% test size)
- Standardized features with StandardScaler

- KNN (K-Nearest Neightbors):
- Optimized k using RandomizedSearchCV 
- Tested odd values of k (1-29) to avoid ties (even k can result in equal votes from 

neighbors)
- In KNN, a tie occurs when an equal number of neighbors vote for different 

classes.
- Results:

- Best k: 27
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Classification Report



Confusion Matrix



Baseline Classifier: KNN



Thank You!


